On the structure of self-complementary graphs
نویسندگان
چکیده
منابع مشابه
On the structure of self-complementary graphs
A graph G is self complementary if it is isomorphic to its complement G. In this paper we define bipartite self-complementary graphs, and show how they can be used to understand the structure of self-complementary graphs. For G a selfcomplementary graph of odd order, we describe a decomposition of G into edge disjoint subgraphs, one of which is a bipartite self-complementary graph of order |G|−...
متن کاملthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولthe effects of changing roughness on the flow structure in the bends
flow in natural river bends is a complex and turbulent phenomenon which affects the scour and sedimentations and causes an irregular bed topography on the bed. for the reason, the flow hydralics and the parameters which affect the flow to be studied and understand. in this study the effect of bed and wall roughness using the software fluent discussed in a sharp 90-degree flume bend with 40.3cm ...
On almost self-complementary graphs
A graph is called almost self-complementary if it is isomorphic to one of its almost complements Xc − I, where Xc denotes the complement of X and I a perfect matching (1-factor) in Xc. Almost self-complementary circulant graphs were first studied by Dobson and Šajna in 2004. In this paper we investigate some of the properties and constructions of general almost self-complementary graphs. In par...
متن کاملOn separable self-complementary graphs
In this paper, we describe the structure of separable self-complementary graphs. c © 2002 Elsevier Science B.V. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Notes in Discrete Mathematics
سال: 2005
ISSN: 1571-0653
DOI: 10.1016/j.endm.2005.06.014